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ABSTRACT It is proved that a Banach space contains
a subepace isomorphic to 11 if (and only if) it has a bounded
sequence with no weak-Cauchy subsequence. The proof
yields that a sequence of subsets of a given set has a sub-
sequence that is either convergent or Boolean independent.

A bounded sequence of elements (fn) in a Banach space B is
said to be equivalent to the usual L-basis provided there is a
5> 0 so that for all n and choices of scalars ci, ... YcnY

n

a Elil < I 1 Vcffill1 [1 ]

Of course if (fn) has this property, then the closed linear span
of the fi's is isomorphic (linearly homeomorphic) to 11. (fn) is
said to be a weak-Cauchy sequence if lim b*(fn) exists for all

n-4g
b* E B*, the dual of B.
THE MAIN THEOREM. Let (fn) be a bounded sequence in a real

Banach space B. Then (fn) has a subsequence (f'n) satisfying
one of the following two mutually exclusive alternatives:

(i) (f'in) is a weak-Cauchy sequence.
(ii) (fIn) is equivalent to the usual l'basis.
We note two immediate consequences:

1. IfB is weakly complete (that is, every weak-Cauchy sequence in
B converges weakly to an element of B), then B is either reflexive
or contains a subspace isomorphic to 11.
II. IfB has the Schur property (that is, every weakly convergent
sequence in B converges in norm), then every infinite-dimensional
subspace ofB contains a subspace isomorphic to 11.

It is a well-known consequence of the Vitali-Hahn-Saks
theorem that Ll(G) is weakly complete for any measure , on
a measurable space, while 11 has the Schur property.
We reformulate the Main Theorem as follows:

THEOREM 1. Let S be a set and (fn) a uniformly bounded
sequence of Teal-valued functions defined on S. Then (fn) has a
subsequence (f'n) satisfying one of the following alternatives:

(i) (f'n) converges point-wise on S.
(ii) (fin) is equivalent in the supremum norm to the usual

11-basis.
The exclusivity of the alternatives of the Main Theorem

follows from the obvious fact that the usual 11-basis is not a
weak-Cauchy sequence. If (bn) is a bounded sequence in a
Banach space B, we let S denote the unit ball of B* and then
define fn(s) = 8(b,,) for all s E S and n, to deduce the Main
Theorem from Theorem 1.
We begin the proof of Theorem 1 with that of the crucial

special case of characteristic functions; that is, a sequence
(An) of subsets of S with fn = XA.. for all n (where XA. (s) = 1
if s E An; xA,(s) = 0 if s f An)* (In classical terminology,
(An) is said to converge if XA,. converges point-wise.) Our
proof of this special case yields that if (An) has no convergent
subsequence, then (An) has a Boolean independent subsequence

(An'); that is, for every pair of nonempty finite disjoint
subsets G and B of indices, n A', n n - A'n id ¢0. It is

nEG nEB
easily seen that a Boolean independent sequence (A,,) of
subsets of S has the property that (XAn) is equivalent to the
usual basis of 11 (see Proposition 4).
Because of the technical difficulties encountered in deducing

Theorem 1 from the above special case, we need a generaliza-
tion of the notion of a convergent sequence of sets. It is also
convenient to introduce the following terminology:
By a sequence we shall mean a set of objects indexed by

some infinite subset M of the positive integers N; we use the
notation (f,,),,EM. We shall understand by "a subset of M" an
infinite subset of M, unless the contrary is explicitly stated.
GivenL andM subsets of N, we say thatL is almost contained
in M if Lf -n M is a finite set. Given a sequence (fn)nEM
and subsets L and Q of M with L almost contained in Q, we
call (fn)nEL a subsequence of (f,,)nEQ. In the case in which
(fn)nEM is a sequence of real-valued functions defined on a
set S, letting {Imi,m2 .... } be a strictly increasing enumeration
of M and s E S, we let

lim fn(s) = lim fmi(s) and lim fn(s) = limfni(s).
M j-*o M j O

(The point of our terminology, of course, is to avoid explicitly
enumerating such sets M whenever it is feasible.)

Definition: Let S be a set, (A,,, B)nEAf be a sequence of pairs
of subsets ofSwith Ann Bn = qsfor all n, andX a subset of S.
We say that (An, Bs)sEm converges on the set X if every point
x E X either belongs to at most finitely many An's, or to at
mostfinitely many B,,'s, i.e., either Jim XA.(x) = 0 or lim XB.(X)

n-4,a no- )

= 0. (WhenX = S, the qualifier "on the set X" may be omitted.)
We say that (An, Bn),EM is independent if for every pair of
disjoint finite nonempty subsets G and B of M,

[2]nE n nEB idE .

nEG nEB

We note that in the special case where Bn = S - A, for
all n and X = S, (A,, B.) nEM converges on X if and only if
(An)neM converges. We also note that if (An, Bn) nEM
converges on X and (An, B,) nEL is a subsequence of (A,,
B.) EM, then (An, B,)nEL converges on X; if (A,,, Bn)fEM
converges on each of the sets X1, X2,..., then (An, Bn).EM

co

converges on U X1. Finally, it is an artifact of our definition

that every such sequence (An, Bn)nEm converges on the
empty set. The special case of Theorem 1 mentioned above, is
an immediate consequence of the next result.
THEOREM 2. Let (An, BO)nEN be a sequence of pairs of

subsets of a set S with A. f Bn = 4 for all n, and suppose that
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(AnM BM)MEN has no convergent subsequence. Then there is an
infinite subset M of N so that (AM, Bn)nEM is independent.

Theorem 2, in turn, follows very simply from the next
crucial result.

LEMMA 3. Let 1 > 1, (AM, BM)MEN a sequence of pairs of
subsets of a set S with An n B,, = 0 for all n, X1, . . ., XI
disjoint subsets of S, and suppose that for each i, 1 < i < 1,
(AnM Bn)nEN has no subsequence convergent on Xi. Then there
exists a j and an infinite subset M of N so that for each i, 1 <
i < 1, (A,,, Bn)fXEm has no subsequence convergent on X n A1
and also no subsequence convergent on Xfl Bj.
We introduce the following notation: Let n E N and e =

±1; define eAn = An if e = +1 and eAn = BM if e = -1.
We may deduce Theorem 2 from Lemma 3 by the following

inductive process: Applying Lemma 3 for the case 1 = 1,
choose n1 and M1 a subset of N so that (An, Byz)nEM, has no
subsequence convergent on either An, or B,,. Suppose ni <
n2 < ... < nk and Mk have been chosen, so that on each of

k

the 2k disjoint sets n (j Ani, (An, Bn),,EMk has no convergent
j=1

subsequence, where e = (Ei, ... ,Ek) ranges over all 2' choices
of signs ef = 4 1 all i. Now applying Lemma 3 for the case
I = 2k, choose nk+1 G Mk, nk+1> nk, and Mk+i a subset of
Mk so that for each E = (El, ... ,Ek), (An, Bn)nEMk+1 has no

k

subsequence convergent on n (} An, n An,,+, and also no
j=1
k

subsequence convergent on n (jAn; n B +,. This completes
j=i

the definition of the n/s and My's by induction; it now follows
immediately that M = {ni, n2, . .. } satisfies the conclusion
of Theorem 2. We note, incidentally, that the sequence (An,
B)nEm has the property that it has no subsequence con-
vergent on any nonempty member of the Boolean ring gen-
erated by {An, Bn: n E M}.

We pass now to the proof of Lemma S. The case 1 = 1 is
critical, and its proof is constructive in a certain sense. We
shall exhibit an algorithm to produce the desired j and M;
this algorithm is then used to prove Lemma 3 by induction.
We now suppose (An, Bn)nEN as in the Definition and let X
be as ubset of S so that (A", Bn)MEN has no subsequence
convergent on X. We shall say that j and M work if (An,
Bn)MEm has no subsequence convergent on bither X n Aj or
X f Bj. It is obvious that we can assume without loss of
generality that S = X; we do so.

THE BASIC ALGORITHM. Let ni be an arbitrary element of N.
If ni and N do not work, let N1 be an arbitrary subset of N
with the property that (An, Bn) EN, converges on An, or Bn,,.
Suppose k > 1 and the subset Nk-l of N and the element
nk-1 of N have been defined. Let nk be an arbitrary member of
Nk-1 with nk> nk-1. If nk and Nk-, do not work, let Nk be
an arbitrary subset of Nk-1 with the property that (A,,
Bn)nEN, converges on Anus or on Ba,,. We now assert that this
process can be continued only a finite number of times. That is,
as long as the n1's and N8's are selected in the above manner, there
must exist a k > 1 so that nk works for Nk-1 (where No = N).

Proof of this assertion: If not, we obtain nk, Nk, and en -
± 1, defined for all k E N, with the properties that nk >
nk-1, nk E Nk-b1 Nk is a subset of Nk-1, and (AM, BM)MEN,
converges on en A,,, (where we put no = 0).
Now let M = n.,, n2, . .}. Then for every k, (An, Bn)MEm

is a subsequence of (An, BO) nEN,, hence (An, BO)MEM con-

verges on U ent A,. Now we may choose an infinite subset
k = 1

M' of M so that em = 1 for all m E M', or {m = -1 for all
m E M'. Suppose the first possibility. Since (AM, BM)MEM,
is a subsequence of (AM, BM)nEM and U en, AMk D U en An

k=l nEM'
- U AM, (AM, BM)MfEM' converges on U An. Since (An,
nEM' nEM'

BM),,)Em does not converge, there must exist an x so that
{n E M': x E An} is infinite and also {n E M': xE B."I
is infinite. But then x E U AM, and hence (AM, BM)MEM'

nEM'
does not converge on U en AM, a contradiction. The proof

nEM'
for the case of the second possibility is the same.
The proof of the assertion of the Basic Algorithm, and hence

of the case 1 = 1 of Lemma 3, is now complete. Suppose
Lemma 3 proved for 1 = r, and let the Xi's and (An, Bn)nEN
satisfy its hypotheses for the case I = r + 1. Again, we shall
say that j and M work if (AM,, Bn) MEM has no subsequence con-
vergent on either X,+ n Aj or X,+lnBj. We shall also say
that j and M r-work if for every 1 < i < r and e = i 1, (AM,
Bn)MEm has no subsequence convergent on Xfln eA1. By the in-
duction hypothesis, we may choose no and N'1 a subset of N so
that n1 and N'1 r-work. If nl and N'1 do not work, choose N1 a
subset of N', so that (AM, BM)MENI converges on AMn, l Xr+
or on Bl n X,.1. Suppose k > 1, and the subset Nk-1 of
N and the element nk-1 of N have been defined. Since (AM,
Bn)nENl is a subsequence of (An, BM) MEN, we may apply
the induction hypothesis to choose an nk E Nk-1 with nk >
n-,, and a subset N'k of Nk-1 so that nk and (AM, Bn)MENj,
r-work. Again, if nk and (AM, Bn)MEN,; do not work, choose
Nk a subset of N', so that (AM, B M)MEN,; converges on An,, n
X.+, or on B, fn XT1. Now this process cannot be continued
indefinitely, since the nk's and Nk's thus constructed satisfy
the criteria of the Basic Algorithm and (AM, BM),,EN has no
subsequence convergent on X,+,. Thus, there must exist a
k > 1 so that nk and N'k work. By construction nk and N',
r-work, hence by definition, nk and N', satisfy the conclusion
of Lemma S.

This completes the proof of Lemma 3 and hence of Theorem
2. To apply Theorem 2 to the proof of our Main Theorem, we
need the following simple sufficient condition for a sequence
of functions to be equivalent to the usual 11-basis.

Proposition 4: Let (fn) MEM be a uniformly bounded sequence
of real-valued functions defined on a set S and a and r real
numbers with 5 > 0. Assume, putting An = {x: fn(x) > a + r}
and BM = {x: fn(x) < r} for all n E M, that (AM, BM),,^ is
independent. Then (fM)MEM is equivalent, in the supremum
norm, to the usual 11-basis.

Proof: We shall prove that the "5" of Eq. [1] may be chosen
to be 5/2. By multiplying all the fn's by -1 if necessary, we
may assume that 5 + r > 0. Let (ci) iEM be a sequence of
scalars with only finitely many ci's non-zero and 2Icl = 1.
It suffices to show that there is an s in S with

12cff(s)8 > 5/2. [3]
Let G = {i C kM: cf > 01 and B = {i E M: cj < 01.

Since Eq. [2] holds, -we may choose x and y such that x E
n Afnf B andyyfE Afln n B . If wesupposefirst
iEG iEB iEB iEG
that r > Oand set B' = {i E B:fj(x) > 01, then

EVi c-ff(x) 2 E c ff(x) > -r Eii: Icl . E Ic I(-r). [41
iEB EiEB' iEB' iEB
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Similarly,

-A cff,(y) 2 E cil(-r).
iEa isE

By Eqs. [4], [5], and the definitions of x and y, we thus have

ZCjfj(x) > Ei |c{(6 + r) + E Ictl(-r) [6]
iEG iEB

and

-2cffj(y) E IciI(6 + r) + E IciI(-T). [7]
iEB -iEG

It is easily seen that Eqs. [6] and [7] also hold if r < 0. Since
the sum of the right-hand sides of Eqs. [6] and [7] equals 6,
the maximum of the left-hand sides must be at least as large
as 6/2. Here we tacitly assumed G 0 and B 0+; however,
the argument is still valid if we simply replace an intersection
over the empty set of indices by S, and a sum over the empty
set of indices by 0. Thus, Eq. [3] is established for s = x or
s = y, so Proposition 4 is proved.
We now assume that S and (fn)nEM satisfy the hypotheses of

Theorem 1 and fail the first alternative; i.e. (fA)EN has no

subsequence point-twise convergent on S. To complete the proof of
Theorem 1, it suffices to construct 6 > 0, a real number r,
and a subset M of N so that the hypotheses of the preceding
proposition are satisfied. The next two lemmas allow us to find
6 and r; their demonstrations involve standard arguments.

LEMMA 5. For each subsetM of N, let

6(M) = sup (lim fm() - lim fm(x))
xES M M

Then there exists a subset Q ofN so that for all subsets L or Q,
6(L) = 6(Q).

Remark: Our standing assumptions imply that 6(M) > 0
for all subsets M of N.

Proof of Lemma 5: For any subsets L and M of N with L
almost contained in M, we have that 6(L) < 6(M). Were the
conclusion of Lemma 5 false, we could choose by transfinite
induction, a transfinite family {Na: a < wil of subsets of N,
indexed by the set of ordinals a less than the first uncountable
ordinal wi, with the property that for all a < i < w, Np, is
almost contained in Na and a6(Ne) < 6(Na). This is impossible,
for as is well known, there does not exist a transfinite strictly
decreasing sequence of (positive) real numbers. (To reach a

contradiction, simply put 6 = inf {I6i(Na): a <wco,, then choose
(an)nEN a sequence of ordinals with = lim 6(Na,); for
is> sup an, we have 6(N^) < 6).

N

Now choose Q a subset of N, satisfying the conclusion of
Lemma 6, and put a = 6(Q)/2; by the above remark, a > 0.

LEMMA 6. There exists a subset M' ofQ and a rational number
r so that for every subset L of M', there is an x E S satisfying

lim fj(x) > a + r andlim fj(x) < r.
L L

Theorem 1 and, hence, our main result follow immediately
from Theorem 2, Proposition 4, and Lemma 6. Indeed, let M'
satisfy the conclusion of Lemma 6, and for each n E Ml.
let A = {x E S: fn(x) > 6 + r Iand B={xE S: f"(x)
< r}. The conclusion of Lemma 6 yields that (An, Bn)lEM'
has no convergent subsequence. By Theorem 2, we may select
a subset M of M' so that (An, Bn)MEM is independent. Then

(fn)XiM satisfies the hypotheses of Proposition 4, hence is
[5 ] equivalent in the supremum norm, to the usual 1l-basis.

Proof ofLemma 6: Suppose not. Let r,, r2,... be an enumera-
tion of the rational numbers. Choose LI a subset of Q so that

for all x E S, lim f1(x) < a + r or lim f1(x) 2 r 18]
L L

holds for L = Li and r = ri. Having chosen the subset Lk
of Q, choose Lk+l C Lkso that Eq. [8] holds forL = L4+ and
r = rk+1. This defines LI D L2 ... .D Lk, . . by induction.
Now by the standard diagonal procedure, choose an infinite
set L with L almost contained in Lk for all k E N. It then
follows that Eq. [8] holds for all rational numbers r. Since L
is in turn almost contained in Q and Q satisfies the conclusion
of Lemma 5,6 (L) = 6(Q) = 26. Let e = d/2. By the definition
of 6(L), we may choose an x E so that

lim f(x) - lim f(X) > a(L) -e. [9]
L L

Now let a = lim fl(x) and b = lim f1(x); Eq. [9] may then
L L

be expressed in the form

a> 26 - e + b> b.

Choose a rational number r so that r > b and r - b + 6 <
26 - e = (3/2)6. Thus

b < r < r + 6 = (r - b) + a + b <26-e + b < a.

Since we thus have a > 6 + r and b < r, Eq. [8] is contra-
dicted.

Q.E.D.

We do not know if the Main Theorem holds for complex
Banach spaces*. However let B be a complex Banach space,
and (ef)fEN a sequence in B equivalent to the usual 11-basis
over the real scalars. If there is no subsetM ofN with (en)fnEM
equivalent to the usual 11-basis over the complex scalars, we
may choose finite disjoint subsets B,, B2, . . . of N and elements
yl, Y2, ... and z,, z2, ... in B so that lim Iyj - z}|I = 0 SO

that for all j, IyJ I = IzjJ I = 1 andyj and izj are in the linear
span of {en: n E Bj . Now for all real scalars a and b and all
j, we have that

hlaizj + byjlIl > I(ai + b)zjll- byj - bzjll
- (a2 + b2)1/ - IbI jjy.-Z 1

It then follows that there is a k so that both sequences (yk,
iZk, Yk+, iZk+,..*) and (Zk, itZk, Zk+, iZk+,, . . .) are equivalent
to the usual 11-basis over the real scalars. Consequently (Zk,
zk+, ....) is equivalent to the usual 11-basis over the complex
scalars. Hence our Main Theorem implies that the result
stated in the abstract holds for complex Banach spaces as well.

This research was partially supported by NSF-GP 30798X1.

Addendum. E. Odell and I have shown that a separable Banach
space B contains a subspace isomorphic to 11 provided there
exists an element in B** that is not a limit in the B* topology
of a sequence in B. Consequently, B contains an isomorph of 1'
if (and only if) the cardinality of B** is greater than that of the
continuum. The proof uses Proposition 4 and arguments similar
to those of Lemmas 5 and 6, but does not make use of Theorem 2
or Lemma 3. This result and related ones will appear elsewhere.
* Note Added in Proof. This has been resolved in the affirma-
tive by L. Dor.
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